Interactive Ray Tracing of Trimmed Bicubic Bézier Surfaces without Triangulation

نویسندگان

  • Markus Geimer
  • Oliver Abert
چکیده

By carefully exploiting the resources of today's computer hardware, interactive ray tracing recently became reality even on a single commodity PC. In most of these implementations triangles are used as the only geometric primitive. However, direct rendering of free-form surfaces would be advantageous for a large number of applications, since robust tessellation of complex scenes into triangles is a very time-consuming process. Additionally, scenes consisting of free-form surfaces require less memory and provide a much higher precision resulting in less rendering artifacts. In this paper, we present our implementation of an efficient and robust algorithm for rapidly finding intersections between rays and trimmed bicubic Bézier surfaces. Using SIMD instructions provided by many of today's CPUs, we perform the intersection test of a packet of four rays with a single Bézier surface in parallel. An optimized bounding volume hierarchy provides good initial guesses needed for fast convergence of the Newton iteration, which forms the core of our intersection algorithm. As a result, we demonstrate that it is feasible to render complex scenes of several thousand Bézier surfaces at video resolution with interactive frame rates on a single PC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examensarbete Ray Tracing Bézier Surfaces on GPU

In this report, we show how to implement direct ray tracing of Bézier surfaces on graphics processing units (GPUs), in particular bicubic rectangular Bézier surfaces and nonparametric cubic Bézier triangles. We use Newton’s method for the rectangular case and show how to use this method to find the ray-surface intersection. For Newton’s method to work we must build a spatial partitioning hierar...

متن کامل

Ray Tracing Non-Polygonal Objects: Implementation and Performance Analysis using Embree

Free-form surfaces and implicit surfaces must be tessellated before being rendered with rasterization techniques. However ray tracing provides the means to directly render such objects without the need to first convert into polygonal meshes. Since ray tracing can handle triangle meshes as well, the question of which method is most suitable in terms of performance, quality and memory usage is ad...

متن کامل

Interactive Display of Large Scale Trimmed NURBS Models

We present an algorithm for interactive display of trimmed NURBS surfaces. The algorithm converts the NURBS surfaces to B ezier surfaces, tessellates each trimmed B ezier surface into triangles and renders them using the triangle rendering capabilities common in current graphics systems. It makes use of tight bounds for uniform tessellation of B ezier surfaces into cells and traces the trimming...

متن کامل

Eecient Rendering of Trimmed Nurbs Surfaces

We present an algorithm for interactive display of trimmed NURBS surfaces. The algorithm converts the NURBS surfaces to B ezier surfaces and NURBS trimming curves into B ezier curves. It tessellates each trimmed B ezier surface into triangles and renders them using the triangle rendering capabilities common in current graphics systems. It makes use of tight bounds for uniform tessel-lation of B...

متن کامل

Topologically consistent trimmed surface approximations based on triangular patches

Topologically consistent algorithms for the intersection and trimming of free-form parametric surfaces are of fundamental importance in computer-aided design, analysis, and manufacturing. Since the intersection of (for example) two bicubic tensor-product surface patches is not a rational curve, it is usually described by approximations in the parameter domain of each surface. If these approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005